The smallest hard-to-color graph for algorithm DSATUR
نویسندگان
چکیده
For a given approximate coloring algorithm a graph is said to be slightly hard-to-color (SHC) if some implementation of the algorithm uses more colors than the chromatic number. Similarly, a graph is said to be hard-to-color (HC) if every implementation of the algorithm results in a non-optimal coloring. In the paper, we study the smallest of such graphs for the DSATUR vertex coloring algorithm. c © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
الگوریتم ژنتیک با جهش آشوبی هوشمند و ترکیب چندنقطهای مکاشفهای برای حل مسئله رنگآمیزی گراف
Graph coloring is a way of coloring the vertices of a graph such that no two adjacent vertices have the same color. Graph coloring problem (GCP) is about finding the smallest number of colors needed to color a given graph. The smallest number of colors needed to color a graph G, is called its chromatic number. GCP is a well-known NP-hard problems and, therefore, heuristic algorithms are usually...
متن کاملA new DSATUR-based algorithm for exact vertex coloring
This paper describes a new exact algorithm PASS for the vértex coloring problem based on the well Keywordsknown DSATUR algorithm. At each step DSATUR maximizes saturation degree to select a new candidate Color vértex to color, breaking ties by máximum degree w.r.t. uncolored vértices. Later Sewell introduced a Graph new tiebreaking strategy, which evaluated available colors for each vértex expl...
متن کاملAn improved DSATUR-based Branch and Bound for the Vertex Coloring Problem
Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph in such a way that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR-based Branch and Bound (DSATUR) is an effective exact algorithm for the VCP. One of its main drawback is that a lower bound is computed only once and it is n...
متن کاملAn Improved DSATUR-Based Branch-and-Bound Algorithm for the Vertex Coloring Problem
Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph in such a way that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR-based Branch-and-Bound algorithm (DSATUR) is an effective exact algorithm for the VCP. One of its main drawback is that a lower bound is computed only once a...
متن کاملThe smallest hard-to-color graph for the SL algorithm
For a given approximate vertex coloring algorithm a graph is said to be slightly hard-tocolor (SHC) if some implementation of the algorithm uses more colors than the minimum needed. Similarly, a graph is said to be hard-to-color (HC) if every implementation of the algorithm results in a nonoptimal coloring. We study smallest such graphs for the smallest-last (SL) coloring algorithm. Our main re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2001